Copied to
clipboard

G = C32⋊Dic9order 324 = 22·34

1st semidirect product of C32 and Dic9 acting via Dic9/C6=S3

metabelian, supersoluble, monomial

Aliases: C321Dic9, C33.1Dic3, C3.(C9⋊C12), (C3×C9)⋊1C12, C32⋊C92C4, C6.1(C3×D9), (C3×C6).1D9, C6.1(C9⋊C6), (C3×C18).1C6, C9⋊Dic31C3, (C32×C6).1S3, C3.1(C3×Dic9), C6.1(C32⋊C6), C2.(C32⋊D9), C3.1(C32⋊C12), C32.13(C3×Dic3), (C3×C6).27(C3×S3), (C2×C32⋊C9).2C2, SmallGroup(324,8)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C32⋊Dic9
C1C3C32C3×C9C3×C18C2×C32⋊C9 — C32⋊Dic9
C3×C9 — C32⋊Dic9
C1C2

Generators and relations for C32⋊Dic9
 G = < a,b,c,d | a3=b3=c18=1, d2=c9, cac-1=ab=ba, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

3C3
6C3
27C4
3C6
6C6
2C32
3C32
3C32
3C9
3C32
6C9
9Dic3
9Dic3
9Dic3
9Dic3
27C12
2C3×C6
3C3×C6
3C3×C6
3C18
3C3×C6
6C18
2C3×C9
3C3⋊Dic3
9C3×Dic3
9C3×Dic3
9C3×Dic3
9Dic9
9C3×Dic3
2C3×C18
3C3×C3⋊Dic3

Smallest permutation representation of C32⋊Dic9
On 108 points
Generators in S108
(1 13 7)(2 84 97)(3 104 79)(4 16 10)(5 87 100)(6 107 82)(8 90 103)(9 92 85)(11 75 106)(12 95 88)(14 78 91)(15 98 73)(17 81 94)(18 101 76)(19 38 67)(20 26 32)(21 63 46)(22 41 70)(23 29 35)(24 66 49)(25 44 55)(27 69 52)(28 47 58)(30 72 37)(31 50 61)(33 57 40)(34 53 64)(36 60 43)(39 45 51)(42 48 54)(56 62 68)(59 65 71)(74 86 80)(77 89 83)(93 105 99)(96 108 102)
(1 89 108)(2 90 91)(3 73 92)(4 74 93)(5 75 94)(6 76 95)(7 77 96)(8 78 97)(9 79 98)(10 80 99)(11 81 100)(12 82 101)(13 83 102)(14 84 103)(15 85 104)(16 86 105)(17 87 106)(18 88 107)(19 55 50)(20 56 51)(21 57 52)(22 58 53)(23 59 54)(24 60 37)(25 61 38)(26 62 39)(27 63 40)(28 64 41)(29 65 42)(30 66 43)(31 67 44)(32 68 45)(33 69 46)(34 70 47)(35 71 48)(36 72 49)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 26 10 35)(2 25 11 34)(3 24 12 33)(4 23 13 32)(5 22 14 31)(6 21 15 30)(7 20 16 29)(8 19 17 28)(9 36 18 27)(37 82 46 73)(38 81 47 90)(39 80 48 89)(40 79 49 88)(41 78 50 87)(42 77 51 86)(43 76 52 85)(44 75 53 84)(45 74 54 83)(55 106 64 97)(56 105 65 96)(57 104 66 95)(58 103 67 94)(59 102 68 93)(60 101 69 92)(61 100 70 91)(62 99 71 108)(63 98 72 107)

G:=sub<Sym(108)| (1,13,7)(2,84,97)(3,104,79)(4,16,10)(5,87,100)(6,107,82)(8,90,103)(9,92,85)(11,75,106)(12,95,88)(14,78,91)(15,98,73)(17,81,94)(18,101,76)(19,38,67)(20,26,32)(21,63,46)(22,41,70)(23,29,35)(24,66,49)(25,44,55)(27,69,52)(28,47,58)(30,72,37)(31,50,61)(33,57,40)(34,53,64)(36,60,43)(39,45,51)(42,48,54)(56,62,68)(59,65,71)(74,86,80)(77,89,83)(93,105,99)(96,108,102), (1,89,108)(2,90,91)(3,73,92)(4,74,93)(5,75,94)(6,76,95)(7,77,96)(8,78,97)(9,79,98)(10,80,99)(11,81,100)(12,82,101)(13,83,102)(14,84,103)(15,85,104)(16,86,105)(17,87,106)(18,88,107)(19,55,50)(20,56,51)(21,57,52)(22,58,53)(23,59,54)(24,60,37)(25,61,38)(26,62,39)(27,63,40)(28,64,41)(29,65,42)(30,66,43)(31,67,44)(32,68,45)(33,69,46)(34,70,47)(35,71,48)(36,72,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,26,10,35)(2,25,11,34)(3,24,12,33)(4,23,13,32)(5,22,14,31)(6,21,15,30)(7,20,16,29)(8,19,17,28)(9,36,18,27)(37,82,46,73)(38,81,47,90)(39,80,48,89)(40,79,49,88)(41,78,50,87)(42,77,51,86)(43,76,52,85)(44,75,53,84)(45,74,54,83)(55,106,64,97)(56,105,65,96)(57,104,66,95)(58,103,67,94)(59,102,68,93)(60,101,69,92)(61,100,70,91)(62,99,71,108)(63,98,72,107)>;

G:=Group( (1,13,7)(2,84,97)(3,104,79)(4,16,10)(5,87,100)(6,107,82)(8,90,103)(9,92,85)(11,75,106)(12,95,88)(14,78,91)(15,98,73)(17,81,94)(18,101,76)(19,38,67)(20,26,32)(21,63,46)(22,41,70)(23,29,35)(24,66,49)(25,44,55)(27,69,52)(28,47,58)(30,72,37)(31,50,61)(33,57,40)(34,53,64)(36,60,43)(39,45,51)(42,48,54)(56,62,68)(59,65,71)(74,86,80)(77,89,83)(93,105,99)(96,108,102), (1,89,108)(2,90,91)(3,73,92)(4,74,93)(5,75,94)(6,76,95)(7,77,96)(8,78,97)(9,79,98)(10,80,99)(11,81,100)(12,82,101)(13,83,102)(14,84,103)(15,85,104)(16,86,105)(17,87,106)(18,88,107)(19,55,50)(20,56,51)(21,57,52)(22,58,53)(23,59,54)(24,60,37)(25,61,38)(26,62,39)(27,63,40)(28,64,41)(29,65,42)(30,66,43)(31,67,44)(32,68,45)(33,69,46)(34,70,47)(35,71,48)(36,72,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,26,10,35)(2,25,11,34)(3,24,12,33)(4,23,13,32)(5,22,14,31)(6,21,15,30)(7,20,16,29)(8,19,17,28)(9,36,18,27)(37,82,46,73)(38,81,47,90)(39,80,48,89)(40,79,49,88)(41,78,50,87)(42,77,51,86)(43,76,52,85)(44,75,53,84)(45,74,54,83)(55,106,64,97)(56,105,65,96)(57,104,66,95)(58,103,67,94)(59,102,68,93)(60,101,69,92)(61,100,70,91)(62,99,71,108)(63,98,72,107) );

G=PermutationGroup([[(1,13,7),(2,84,97),(3,104,79),(4,16,10),(5,87,100),(6,107,82),(8,90,103),(9,92,85),(11,75,106),(12,95,88),(14,78,91),(15,98,73),(17,81,94),(18,101,76),(19,38,67),(20,26,32),(21,63,46),(22,41,70),(23,29,35),(24,66,49),(25,44,55),(27,69,52),(28,47,58),(30,72,37),(31,50,61),(33,57,40),(34,53,64),(36,60,43),(39,45,51),(42,48,54),(56,62,68),(59,65,71),(74,86,80),(77,89,83),(93,105,99),(96,108,102)], [(1,89,108),(2,90,91),(3,73,92),(4,74,93),(5,75,94),(6,76,95),(7,77,96),(8,78,97),(9,79,98),(10,80,99),(11,81,100),(12,82,101),(13,83,102),(14,84,103),(15,85,104),(16,86,105),(17,87,106),(18,88,107),(19,55,50),(20,56,51),(21,57,52),(22,58,53),(23,59,54),(24,60,37),(25,61,38),(26,62,39),(27,63,40),(28,64,41),(29,65,42),(30,66,43),(31,67,44),(32,68,45),(33,69,46),(34,70,47),(35,71,48),(36,72,49)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,26,10,35),(2,25,11,34),(3,24,12,33),(4,23,13,32),(5,22,14,31),(6,21,15,30),(7,20,16,29),(8,19,17,28),(9,36,18,27),(37,82,46,73),(38,81,47,90),(39,80,48,89),(40,79,49,88),(41,78,50,87),(42,77,51,86),(43,76,52,85),(44,75,53,84),(45,74,54,83),(55,106,64,97),(56,105,65,96),(57,104,66,95),(58,103,67,94),(59,102,68,93),(60,101,69,92),(61,100,70,91),(62,99,71,108),(63,98,72,107)]])

42 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H4A4B6A6B6C6D6E6F6G6H9A···9I12A12B12C12D18A···18I
order123333333344666666669···91212121218···18
size11222233662727222233666···6272727276···6

42 irreducible representations

dim111111222222226666
type+++-+-++--
imageC1C2C3C4C6C12S3Dic3D9C3×S3Dic9C3×Dic3C3×D9C3×Dic9C32⋊C6C9⋊C6C32⋊C12C9⋊C12
kernelC32⋊Dic9C2×C32⋊C9C9⋊Dic3C32⋊C9C3×C18C3×C9C32×C6C33C3×C6C3×C6C32C32C6C3C6C6C3C3
# reps112224113232661212

Matrix representation of C32⋊Dic9 in GL8(𝔽37)

10000000
01000000
00100000
00010000
0011363600
00001000
00000001
0011003636
,
10000000
01000000
003610000
003600000
003600100
0001363600
003600001
0001003636
,
340000000
2612000000
000013600
0036362100
000010360
000010036
00001000
003601000
,
3635000000
01000000
003160000
00060000
003100066
000600031
003106600
000603100

G:=sub<GL(8,GF(37))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0,36,1,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,36,36,0,36,0,0,0,1,0,0,1,0,1,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36],[34,26,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,36,0,0,0,36,0,0,0,36,0,0,0,0,0,0,1,2,1,1,1,1,0,0,36,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0],[36,0,0,0,0,0,0,0,35,1,0,0,0,0,0,0,0,0,31,0,31,0,31,0,0,0,6,6,0,6,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,31,0,0,0,0,6,0,0,0,0,0,0,0,6,31,0,0] >;

C32⋊Dic9 in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm Dic}_9
% in TeX

G:=Group("C3^2:Dic9");
// GroupNames label

G:=SmallGroup(324,8);
// by ID

G=gap.SmallGroup(324,8);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,3171,585,453,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^18=1,d^2=c^9,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Dic9 in TeX

׿
×
𝔽